Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Chem Chem Phys ; 25(41): 28043-28051, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847194

RESUMO

67Zn MAS NMR spectroscopy was used to characterize the state of Zn in Zn-modified zeolites ZSM-5. Two 67Zn enriched zeolite samples were prepared: by solid-state exchange with metal 67Zn (Zn2+/ZSM-5 sample) and by ion exchange with zinc formate solution (ZnO/H-ZSM-5 sample), both containing ca. 3.8 wt% Zn. The elemental analysis, TEM, and quantitative BAS and aluminum analyses with 1H and 27Al MAS NMR have shown that Zn2+/ZSM-5 contains zinc in the form of Zn2+ cations, while both ZnO species and Zn2+ cations are present in ZnO/H-ZSM-5 besides BAS. 67Zn MAS NMR has detected the signal of Zn in a tetrahedral environment from ZnO species for both the activated and hydrated ZnO/H-ZSM-5 zeolite. The signal of Zn in an octahedral environment was detected for the hydrated Zn2+/ZSM-5 and ZnO/H-ZSM-5 zeolites. This signal may belong to zinc cation [HOZn]+ or Zn(OH)2 species surrounded by water molecules. Quantitative 67Zn MAS NMR analysis has shown that only 27 and 38% of zinc loaded in the zeolite is visible for the activated and hydrated ZnO/H-ZSM-5 zeolite, and 24% of Zn is visible for the hydrated Zn2+/ZSM-5. Zinc in the form of ZnO species is entirely visible in both the activated and hydrated ZnO/H-ZSM-5 zeolite, while Zn2+ cations are not detected at all for the activated sample and only 29% of Zn2+ cations is visible for the hydrated zeolite. Detection of only a part of Zn2+ cations in the form of [HOZn]+ or Zn(OH)2 species in octahedral environment presumes only partial hydrolysis of the bond of Zn2+ cation with framework oxygen and further solvation of the Zn species formed at hydrolysis by the adsorbed water.

2.
Proc Natl Acad Sci U S A ; 120(2): e2215458120, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608293

RESUMO

High-temperature superconducting cuprates respond to doping with a dome-like dependence of their critical temperature (Tc). But the family-specific maximum Tc can be surpassed by application of pressure, a compelling observation known for decades. We investigate the phenomenon with high-pressure anvil cell NMR and measure the charge content at planar Cu and O, and with it the doping of the ubiquitous CuO2 plane with atomic-scale resolution. We find that pressure increases the overall hole doping, as widely assumed, but when it enhances Tc above what can be achieved by doping, pressure leads to a hole redistribution favoring planar O. This is similar to the observation that the family-specific maximum Tc is higher for materials where the hole content at planar O is higher at the expense of that at planar Cu. The latter reflects dependence of the maximum Tc on the Cu-O bond covalence and the charge-transfer gap. The results presented here indicate that the pressure-induced enhancement of the maximum Tc points to the same mechanism.

3.
Chemistry ; 29(5): e202202962, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36310393

RESUMO

Kinetics of H/D hydrogen exchange between deuterated isobutane-d10 and Brønsted acid sites (BAS) of three zeolite samples (H-BEA, ZnO/H-BEA, Zn2+ /H-BEA) were monitored with 1 H MAS NMR in situ at 343-468 K. The regioselective H/D exchange in the methyl groups detected on H-BEA can be rationalized in terms of the mechanism of indirect exchange, which involves protonation of the intermediate olefin and further hydride abstraction from the other alkane molecule by the formed carbenium ion. Loading of Zn species in the zeolite results in a decrease of the rate and an increase of the activation energy of the exchange. The loaded Zn species provide the tuning effect on the reaction occurrence, changing the mechanism from the indirect one to the mechanism of the direct exchange.


Assuntos
Butanos , Zeolitas , Butanos/química , Zeolitas/química , Hidrogênio/química , Alcanos , Zinco/química
4.
Chemphyschem ; 23(1): e202100587, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34505329

RESUMO

To clarify the effects of different Zn species, zeolite topology and acidity (quantity of Brønsted acid sites, BAS) on alkane aromatization, isobutane transformation on Zn2+ /H-ZSM-5, Zn2+ /H-BEA, and ZnO/H-BEA zeolites has been monitored with 13 C MAS NMR. The alkane transformation has been established to occur by aromatization and hydrogenolysis pathways. Zn2+ species is more efficient for the aromatization reaction because aromatic products are formed at lower temperatures on Zn2+ /H-BEA and Zn2+ /H-ZSM-5 than on ZnO/H-BEA. The larger quantity of BAS in ZnO/H-BEA seems to provide a higher degree of the hydrogenolysis pathway on this catalyst. The mechanism of the alkane aromatization is similar for the zeolites of different topology and containing different Zn species, with the main reaction steps being the following: (i) isobutane dehydrogenation to isobutene via isobutylzinc; (ii) isobutene stabilization as a π-complex on Zn sites; (iii) isobutene oligomerization via the alkene insertion into Zn-C bond of methyl-σ-allylzinc formed from the π-complex; (iv) oligomer dehydrogenation with intermediate formation of polyene carbanionic structures; (v) aromatics formation via further polyene dehydrogenation, protonation, cyclization, deprotonation steps with BAS involvement.


Assuntos
Zeolitas , Óxido de Zinco , Butanos , Espectroscopia de Ressonância Magnética , Zinco
5.
Phys Chem Chem Phys ; 21(20): 10594-10602, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31074753

RESUMO

The Zintl phase deuterides CaSiD4/3, SrSiD5/3, BaSiD2, SrGeD4/3, BaGeD5/3 and BaSnD4/3 were investigated by nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to reliably determine element-deuterium bond lengths. These compounds show deuterium bound to the polyanion and deuteride ions in tetrahedral cationic voids. With 2H-NMR experiments we characterised the individual signals of the two distinct crystal sites. Quadrupolar coupling constants (CQ) of the anion-binding site were determined as 58 to 78 kHz (Si compounds), 51 to 61 kHz (Ge compounds) and 38 kHz (Sn compound). These values agree well with the quadrupole couplings derived from DFT using optimized structural models. We further calculated the general element-deuterium distance dependency of CQ using DFT methods that allow an accurate determination of bond lengths via the 2H quadrupole interaction. The thus determined bond lengths are evaluated as d(Si-D) = 1.53-1.59 Å, d(Ge-D) = 1.61-1.65 Å and d(Sn-D) = 1.86 Å. Chemical shifts of the anion-binding site range from 0.3 to 1.3 ppm. The isotropic chemical shifts of the tetrahedral sites are 5.1 ppm (CaSiD4/3), 7.0 to 10.0 ppm (Sr compounds) and 10.7 to 11.6 ppm (Ba compounds).

6.
J Magn Reson ; 302: 34-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30953924

RESUMO

Three-dimensional topological insulators are an important class of modern materials, and a strong spin-orbit coupling is involved in making the bulk electronic states very different from those near the surface. Bi2Se3 is a model compound, and 209Bi NMR is employed here to investigate the bulk properties of the material with focus on the quadrupole splitting. It will be shown that this splitting measures the energy band inversion induced by spin-orbit coupling in quantitative agreement with first-principle calculations. Furthermore, this quadrupole interaction is very unusual as it can show essentially no angular dependence, e.g., even at the magic angle the first-order splitting remains. Therefore, it is proposed that the magnetic field direction is involved in setting the quantization axis for the electrons, and that their life time leads to a new electronically driven relaxation mechanism, in particular for quadrupolar nuclei like 209Bi. While a quantitative understanding of these effects cannot be given, the results implicate that NMR can become a powerful tool for the investigation of such systems.

7.
J Phys Condens Matter ; 30(30): 305803, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897048

RESUMO

In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.

8.
Angew Chem Int Ed Engl ; 57(18): 5156-5160, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29465815

RESUMO

Through IR microimaging the spatially and temporally resolved development of the CO2 concentration in a ZIF-8@6FDA-DAM mixed matrix membrane (MMM) was visualized during transient adsorption. By recording the evolution of the CO2 concentration, it is observed that the CO2 molecules propagate from the ZIF-8 filler, which acts as a transport "highway", towards the surrounding polymer. A high-CO2 -concentration layer is formed at the MOF/polymer interface, which becomes more pronounced at higher CO2 gas pressures. A microscopic explanation of the origins of this phenomenon is suggested by means of molecular modeling. By applying a computational methodology combining quantum and force-field based calculations, the formation of microvoids at the MOF/polymer interface is predicted. Grand canonical Monte Carlo simulations further demonstrate that CO2 tends to preferentially reside in these microvoids, which is expected to facilitate CO2 accumulation at the interface.

9.
RSC Adv ; 8(68): 38941-38944, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35558297

RESUMO

Pulsed field gradient (PFG) NMR is successfully applied to trace the diffusion of methyl oleate (MO) inside the mesopores of hierarchically structured titanium silicalite-1 (TS-1)-based catalysts. Introduction of mesoporosity by post-synthetic treatment of initially microporous TS-1 provides additional active surface to improve catalytic activity in the epoxidation of MO. The present study provides experimental evidence of the accessibility of mesopores for MO resulting from alkaline treatment of TS-1. The self-diffusion coefficients of MO inside the pores of hierarchically structured TS-1 catalysts are up to two orders of magnitude lower compared to the values in the bulk liquid phase. Additionally, the methodological capability of PFG NMR for measuring self-diffusion coefficients of long-chain hydrocarbons (up to C19) confined to narrow mesopores of catalytically active is demonstrated for the first time.

10.
RSC Adv ; 8(70): 40060, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-35560832

RESUMO

[This corrects the article DOI: 10.1039/C8RA07434H.].

11.
Inorg Chem ; 56(3): 1061-1071, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28098994

RESUMO

Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3-x and BaSnD4/3-x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge-D) = 1.521(9) Å and d(Sn-D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2-x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si-D) = 1.641(5) Å.

12.
Nat Commun ; 7: 11413, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150719

RESUMO

Universal scaling laws can guide the understanding of new phenomena, and for cuprate high-temperature superconductivity the influential Uemura relation showed, early on, that the maximum critical temperature of superconductivity correlates with the density of the superfluid measured at low temperatures. Here we show that the charge content of the bonding orbitals of copper and oxygen in the ubiquitous CuO2 plane, measured with nuclear magnetic resonance, reproduces this scaling. The charge transfer of the nominal copper hole to planar oxygen sets the maximum critical temperature. A three-dimensional phase diagram in terms of the charge content at copper as well as oxygen is introduced, which has the different cuprate families sorted with respect to their maximum critical temperature. We suggest that the critical temperature could be raised substantially if one were able to synthesize materials that lead to an increased planar oxygen hole content at the expense of that of planar copper.

13.
Nat Commun ; 6: 7697, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26177626

RESUMO

Under certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of 'overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation. Here we report the application of interference microscopy to monitor 'uphill' fluxes, covering the entire period of overshooting from initiation until final equilibration. It is shown that the evolution of the profiles can be adequately predicted from the single-component diffusivities together with the binary adsorption equilibrium data. The guest molecules studied (carbon dioxide, ethane and propene) and the host material (ZSM-58 or DDR) are of practical interest in relation to the development of kinetically selective adsorption separation processes.

14.
Chemistry ; 21(3): 1118-24, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25404549

RESUMO

Spectroscopic techniques are a powerful tool for structure determination, especially if single-crystal material is unavailable. (113)Cd solid-state NMR is easy to measure and is a highly sensitive probe because the coordination number, the nature of coordinating groups, and the geometry around the metal ion is reflected by the isotropic chemical shift and the chemical-shift anisotropy. Here, a detailed investigation of a series of 27 cadmium coordination polymers by (113)Cd solid-state NMR is reported. The results obtained demonstrate that (113)Cd NMR is a very sensitive tool to characterize the cadmium environment, also in non-single-crystal materials. Furthermore, this method allows the observation of guest-induced phase transitions supporting understanding of the structural flexibility of coordination frameworks.

15.
Rev Sci Instrum ; 86(12): 123906, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724046

RESUMO

Nuclear magnetic resonance (NMR) experiments are reported at up to 30.5 GPa of pressure using radiofrequency (RF) micro-coils with anvil cell designs. These are the highest pressures ever reported with NMR, and are made possible through an improved gasket design based on nano-crystalline powders embedded in epoxy resin. Cubic boron-nitride (c-BN), corundum (α-Al2O3), or diamond based composites have been tested, also in NMR experiments. These composite gaskets lose about 1/2 of their initial height up to 30.5 GPa, allowing for larger sample quantities and preventing damages to the RF micro-coils compared to precipitation hardened CuBe gaskets. It is shown that NMR shift and resolution are less affected by the composite gaskets as compared to the more magnetic CuBe. The sensitivity can be as high as at normal pressure. The new, inexpensive, and simple to engineer gaskets are thus superior for NMR experiments at high pressures.

16.
J Vis Exp ; (92): e52243, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25350694

RESUMO

Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos
17.
Chemistry ; 20(29): 8862-6, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24939723

RESUMO

The development of water-mediated proton-conducting materials operating above 100 °C remains challenging because the extended structures of existing materials usually deteriorate at high temperatures. A new triazolyl phosphonate metal-organic framework (MOF) [La3L4(H2O)6]Cl⋅x H2O (1, L(2-) = 4-(4H-1,2,4-triazol-4-yl)phenyl phosphonate) with highly hydrophilic 1D channels was synthesized hydrothermally. Compound 1 is an example of a phosphonate MOF with large regular pores with 1.9 nm in diameter. It forms a water-stable, porous structure that can be reversibly hydrated and dehydrated. The proton-conducting properties of 1 were investigated by impedance spectroscopy. Magic-angle spinning (MAS) and pulse field gradient (PFG) NMR spectroscopies confirm the dynamic nature of the incorporated water molecules. The diffusivities, determined by PFG NMR and IR microscopy, were found to be close to that of liquid water. This porous framework accomplishes the challenges of water stability and proton conduction even at 110 °C. The conductivity in 1 is proposed to occur by the vehicle mechanism.

18.
Rev Sci Instrum ; 85(4): 043903, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24784622

RESUMO

A new design of a non-magnetic high-pressure anvil cell for nuclear magnetic resonance (NMR) experiments at Giga-Pascal pressures is presented, which uses a micro-coil inside the pressurized region for high-sensitivity NMR. The comparably small cell has a length of 22 mm and a diameter of 18 mm, so it can be used with most NMR magnets. The performance of the cell is demonstrated with external-force vs. internal-pressure experiments, and the cell is shown to perform well at pressures up to 23.5 GPa using 800 µm 6H-SiC large cone Boehler-type anvils. (1)H, (23)Na, (27)Al, (69)Ga, and (71)Ga NMR test measurements are presented, which show a resolution of better than 4.5 ppm, and an almost maximum possible signal-to-noise ratio.

19.
J Phys Condens Matter ; 26(1): 015501, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24292279

RESUMO

High-sensitivity (27)Al nuclear magnetic resonance (NMR) measurements of aluminum metal under hydrostatic pressure of up to 10.1 GPa reveal an unexpected negative curvature in the pressure dependence of the electronic density of states measured through shift and relaxation, which violates free electron behavior. A careful analysis of the Fermiology of aluminum shows that pressure induces an electronic topological transition (Lifshitz transition) that is responsible for the measured change in the density of states. The experiments also reveal a sudden increase in the NMR linewidth above 4.2 GPa from quadrupole interaction, which is not in agreement with the metal's cubic symmetry.


Assuntos
Alumínio/química , Eletrônica , Elétrons , Espectroscopia de Ressonância Magnética , Transição de Fase , Transporte de Elétrons , Modelos Moleculares , Pressão
20.
J Chem Phys ; 139(3): 034202, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883020

RESUMO

The (13)C nuclear spin-lattice relaxation time of (13)CO and (13)CO2 molecules adsorbed in the metal-organic frameworks (MOFs) Cu2.97Zn0.03(btc)2 and Cu3(btc)2 is investigated over a wide range of temperatures at resonance frequencies of 75.468 and 188.62 MHz. In all cases a mono-exponential relaxation is observed, and the (13)C spin-lattice relaxation times (T1) reveal minima within the temperature range of the measurements and both frequencies. This allows us to carry out a more detailed analysis of the (13)C spin relaxation data and to consider the influence due to the spectral functions of the thermal motion. In a model-free discussion of the temperature dependence of the ratios T1 (T)∕T1,min we observe a motional mechanism that can be described by a single correlation time. In relation to the discussion of the relaxation mechanisms this can be understood in terms of dominating translational motion with mean jump distance being larger than the minimum distances between neighboring adsorption sites in the MOFs. A more detailed discussion of the jump-like motion observed here might be carried out on the basis of self-diffusion coefficients. From the present spin relaxation measurements activation energies for the local motion of the adsorbed molecules in the MOFs can be estimated to be 3.3 kJ∕mol and 2.2 kJ∕mol, for CO and CO2 molecules, respectively. Finally, our findings are compared with our recent results derived from the (13)C line shape analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...